On Erdélyi-magnus-nevai Conjecture for Jacobi Polynomials

نویسنده

  • ILIA KRASIKOV
چکیده

T. Erdélyi, A.P. Magnus and P. Nevai conjectured that for α, β ≥ − 1 2 , the orthonormal Jacobi polynomials P (α,β) k (x) satisfy the inequality max x∈[−1,1] (1− x) 1 2 (1 + x) 1 2 ( P (α,β) k (x) )2 = O (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Conjecture of Nevai

It is shown that a conjecture concerning the derivatives of orthogonal polynomials, proved by Nevai in 1990 for generalized Jacobi weights, holds for doubling weights as well.

متن کامل

How Sharp Is Bernstein’s Inequality for Jacobi Polynomials?

Bernstein’s inequality for Jacobi polynomials P (α,β) n , established in 1987 by P. Baratella for the region R1/2 = {|α| ≤ 1/2, |β| ≤ 1/2}, and subsequently supplied with an improved constant by Y. Chow, L. Gatteschi, and R. Wong, is analyzed here analytically and, above all, computationally with regard to validity and sharpness, not only in the original region R1/2, but also in larger regions ...

متن کامل

Critical Lieb-thirring Bounds in Gaps and the Generalized Nevai Conjecture for Finite Gap Jacobi Matrices

We prove bounds of the form ∑ e∈I∩σd(H ) dist ( e, σe(H ) )1/2 ≤ L-norm of a perturbation, where I is a gap. Included are gaps in continuum one-dimensional periodic Schrödinger operators and finite gap Jacobi matrices, where we get a generalized Nevai conjecture about an L1-condition implying a Szegő condition. One key is a general new form of the Birman-Schwinger bound in gaps.

متن کامل

On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials

In 1995 Magnus [15] posed a conjecture about the asymptotics of the recurrence coefficients of orthogonal polynomials with respect to the weights on [−1, 1] of the form (1− x) (1 + x) |x0 − x| × { B, for x ∈ [−1, x0) , A, for x ∈ [x0, 1] , with A,B > 0, α, β, γ > −1, and x0 ∈ (−1, 1). We show rigorously that Magnus’ conjecture is correct even in a more general situation, when the weight above h...

متن کامل

Probabilistic Averages of Jacobi Operators

I study the Lyapunov exponent and the integrated density of states for general Jacobi operators. The main result is that questions about these can be reduced to questions about ergodic Jacobi operators. I use this to show that for finite gap Jacobi operators, regularity implies that they are in the Cesàro–Nevai class, proving a conjecture of Barry Simon. Furthermore, I use this to study Jacobi ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008